Chapter 2

Second-Order Linear Differential Equations
1
Homogeneous Linear Equations of the Second Order
1.1 Linear Differential Equation of the Second Order

y'' + p(x) y' + q(x) y   =   r(x)
Linear

where
p(x), q(x):  coefficients of the equation

if
r(x)   =   0
 homogeneous


r(x)   (   0
( nonhomogeneous


p(x), q(x) are constants 
 constant coefficients

[Example]
(i)
( 1  x2 ) y''  2 x y' + 6 y   =   0



(

y''  –   EQ \f(2 x,  1 - x2  ) y' +   EQ \f(6,  1 - x2  ) y   =   0
 EQ \a\al(homogeneous,variable coefficients,linear) 
(ii)
y'' + 4 y' + 3 y   =   ex
 EQ \a\al(nonhomogeneous,constant coefficients,linear) 
(iii)
y'' y + y'   =   0
nonlinear

(iv)
y'' + (sin x) y' + y = 0
linear, variable coefficients

1.2
SecondOrder Differential Equations Reducible to the First Order 

(Read p. 71, Problems 1-8, 10 of the Textbook)

Case I:  F(x, y', y'')   =   0
 y does not appear explicitly
[Example]
y''   =   y' tanh x

[Solution]
Set 
y'   =   z  and  
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Thus, the differential equation becomes a firstorder dif​ferential equation:


z'   =   z tanh x

which can be solved by the method of separation of vari​ables


 EQ \f( dz , z )   = tanh x dx   =    EQ \f(  sinh x  ,cosh x)   dx

or
ln|z|   =   ln|cosh x| + c'


z   =   c1 cosh x

or
y'   =   c1 cosh x

Again, the above equation can be solved by separation of variables:


dy   =   c1 cosh x dx


y   =   c1 sinh x + c2

#
Case II:  F(y, y', y'')   =   0    x does not appear explicitly

[Example]
y'' + y'3 cos y   =   0

[Solution]
Again, set z   =   y'
thus,
y''   =    EQ \f( dz ,dx)   =    EQ \f( dz ,dy)  \f( dy ,dx)   =    EQ \f( dz ,dy) y'    =    EQ \f( dz ,dy) z

Thus, the above equation becomes a firstorder differen​tial equation of z with respect to y:


 EQ \f(dz,dy)   z + z3 cos y   =   0

which can be solved by separation of variables:

  EQ \f(  dz  , z2 )   =   cos y dy

or
 EQ \f(1, z )   =   sin y + c1
or
y'   =    EQ \f(1, sin y + c1 ) 
which can be solved by separation of variables again


(sin y + c1) dy   =   dx


 cos y + c1 y + c2   =   x
# 
[Exercise]
Solve y'' + ey(y')3   =   0

[Answer]
ey - c1 y   =   x + c2   (Check with your answer!)

[Exercise]
Solve y y'' = (y')2
2
General Solutions
2.1
Superposition Principle (p. 65 of the Textbook)

[Example]
Show that (1) y   =   e–5x, (2) y   =   e2x and (3) y   =   c1 e–5x + c2 e2x are all so​lutions to the equation


y'' + 3 y'  10 y   =   0

[Solution]
(e–5x)'' + 3 (e–5x)'  10 e–5x


= 25 e–5x  15 e–5x  10 e–5x   =   0


(e2x)'' + 3 (e2x)'  10 e2x 



= 4 e2x + 6 e2x  10 e2x   =   0


(c1 e–5x + c2 e2x)'' + 3 (c1 e–5x + c2 e2x)'  10 (c1 e–5x + c2 e2x)



= c1 (25 e–5x  15 e–5x  10 e–5x) 




+ c2 (4 e2x + 6 e2x  10 e2x)   =   0

Thus, we have the following superposition principle:

[Theorem]  (p. 66 of the Textbook)

Let y1 and y2 be two solutions of the homogeneous linear dif​ferential equation


y'' + p(x) y' + q(x) y   =   0

then the linear combination of y1 and y2, i.e.,


y3   =   c1 y1 + c2 y2
is also a solution of the differential equation, where c1 and c2 are arbitrary constants.

[Proof]


(c1 y1 + c2 y2)'' + p(x) (c1 y1 + c2 y2)' + q(x) (c1 y1 + c2 y2)



= c1 y1'' + c2 y2'' + p(x) c1 y1' + p(x) c2 y2'




+ q(x) c1 y1 + q(x) c2 y2


= c1 (y1'' + p(x) y1' + q(x) y1) 




+ c2 (y2'' + p(x) y2' + q(x) y2)



= c1 (0) 

(since y1 is a solution)





   + c2 (0)
(since y2 is a solution)



= 0

Remarks:
1
The above theorem applies only to the homoge​neous linear differential equations


2
Read the problems 20 on page 71 of the textbook for some important general properties of homoge​neous and nonhomogeneous linear differential equations.

2.2 Linear Independence (p. 68 of the Textbook)  
Two functions, y1(x) and y2(x), are linearly independent  on an interval [x0, x1] whenever the relation c1 y1(x) + c2 y2(x) = 0 for all x in the interval implies that c1 = c2 = 0.  
Otherwise, they are linearly dependent.
There is an easier way to see if two functions y1 and y2 are linearly independent.  If c1 y1(x) + c2 y2(x) = 0 (where c1 and c2 are not both zero), we may suppose that c1 ( 0.  Then


y1(x) +  EQ \f(  c2  ,c1)  y2(x)    =    0

or
y1(x)   =   –  EQ \f(  c2  , c1 ) y2(x)   =    C y2(x)

Therefore:
Two functions are linearly dependent on the interval if and only if one of the functions is a constant multiple of the other.

2.3 General Solution
Consider the secondorder homogeneous linear differential equation:


y'' + p(x) y' + q(x) y   =   0

where p(x) and q(x) are continuous functions, then

(1)
Two linearly independent solutions of the equation can always be found.

(2)
Let y1(x) and y2(x) be any two solutions of the homogeneous equation, then any linear combination of them (i.e., c​1 y1 + c2 y2) is also a solution.

(3)
In fact, the general solution of the differential equation is given by the linear combination



y(x)   =   c1 y1(x) + c2 y2(x)

where c1 and c2 are arbitrary constants, and y1(x) and y2(x) are two linearly independent solutions. (y1 and y2 form a basis of the solution on the interval I )

(4) A particular solution of the differential equation on I is ob​tained if we assign specific values to c1 and c2 in the general solution.
[Example]
Verify that y1 = e–5x, and y2 = e2x are linearly indepen​dent solutions to the equation


y'' + 3 y'  10 y   =   0

[Solution]

It has been shown that y = e–5x and y = e2x are solutions to the differential equation.  In addition


y1   =   e–5x   =   e–7x e2x   =   e–7x y2
and e–7x is not a constant, we see that e–5x and e2x are linearly independent and form the basis of the general solution.  The general solution is then


y   =   c1 e–5x + c2 e2x
2.4  Initial Value Problems and Boundary Value Problems
Initial Value Problems

Differential Equation
y'' + p(x) y' + q(x) y   =   0

with
Initial Conditions
y(x0)  =  k0,    y'(x0)  =  k1

Particular solutions with c1 and c2 evaluated from the initial conditions.

Boundary Value Problems

Differential Equation
y'' + p(x) y' + q(x) y  =  0

with
Boundary Conditions
y(x0)  =  k0,   y(x1)  =  k1
where x0 and x1 are boundary points.


Particular solution with c1 and c2 evaluated from the boundary conditions.

2.5
Using One Solution to Find Another (Reduction of Order)
If y1 is a nonzero solution of the equation

y'' + p(x) y' + q(x) y   =   0

we want to seek another solution y2 such that y1 and y2 are linearly inde​pendent.  Since y1 and y2 are linearly inde​pendent, the ratio


 EQ \f(y2, y1 )  =   u(x)

must be a non-constant function of x, and y2 = u y1 must satisfy the differential equation.  Now


(u y1)'   =   u' y1 + u y1'


(u y1)''  =   u y1'' + 2 u' y1' + u'' y1
Put the above equations into the differential equation and collect terms, we have


u'' y1 + u' (2 y1' + p y1) + u (y1'' + p y1' + q y1)   =   0

Since y1 is a solution of the differential equation,


y1'' + p y1' + q y1   =   0


u'' y1 + u' (2y1' + p y1)   =   0

or
u'' + u'  EQ \b\bc\[( 2 \f(  y1'  , y1) + p )  =   0

Note that the above equation is of the form F(u'', u', x) = 0 which can be solved by setting


U   =   u'

and then
U' +  EQ \b\bc\[( 2 \f(y1', y1 ) + p )  U   =   0

which can be solved by separation of variables:


U   =    EQ \f(c, y12 )  e EQ \s\up6(-\i( , , p(x) dx))  
where c is an arbitrary constant.  Take simply (by setting c = 1 )


U   =    EQ \f(1, y12 )  e EQ \s\up6(-\i( , , p(x) dx))  
and perform another integration to obtain u, we have


y2   =   u y1   =   y1(x)  EQ \i( , , \f(e\s\up6(-\i( , , p(x) dx)) ,y12(x) ) dx) 
Note that e EQ \s\up8(-\i( , , p(x) dx))  is never zero, i.e., u is non-constant. 
Thus,  y1 and y2 form a basis.

[Example]
y1   =   x   is a solution to 



x2 y''  x y' + y   =   0   
;
x > 0


Find a second, linearly independent solution.

[Solution]

We solve this problem in the following two ways:

Method 1:  Use y2 = u y1
Let 
y2   =   u y1   =   u x

then
y2'   =   u' x + u


y2''   =   u'' x + 2 u'

so
x2 y2''  x y2' + y2


= x3 u'' + 2 x2 u'  x2 u'  x u + x u


= x3 u'' + x2 u'   =   0

or
x u'' + u'   =   0

Set
U   =   u',
then


U'   =   –  EQ \f( 1 ,x)   U      
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or
U   =   e EQ \s\up12(–\i(,,1/x) dx)  =  e EQ \s\up10(- ln x)   =   EQ \f(1,x) 
Since
U   =   u'


u   =    EQ \i(,, U dx)   =  EQ \i(,, 1/x dx)   = ln x

and
y2(x)   =   u y1   =   x ln x

You should verify that y2 is indeed a solution.

Method II: Use formula. 
To use the formula, we need to write the differential equation in the following standard form:


y''   EQ \f( 1 ,  x  ) y' +  EQ \f( 1 ,  x2 ) y   =   0


y2 
=   y1(x)  EQ \i( , , \f(e\s\up6(-\i( , , p(x) dx)) ,y12(x) ) dx) 
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=   x  EQ \i( , , \f(x, x2 ) dx)    =   x ln x

[Exercise 1]
Find the second linearly independent solution to 



( 1  x2 ) y''   2 x y'  + 2 y   =   0



given y1 = x



Hint:   EQ \i( , , )\f(dx, 1 - x2 )   =  EQ \f(1, 2 )   ln (  EQ \f(1 + x, 1 - x )  )

[Exercise 2] 
Find the second linearly independent solution to




y''  -  EQ \f(y', x2 )  +   EQ \f(y, x3 )   =   0

given by y1 = x .

[Exercise 3]
Verify that y = tan x satisfies the equation




y'' cos2x = 2y

and obtain the general solution to the above differential equation.
3 Homogeneous Equations with Constant Coefficients  

y'' + a y' + b y   =   0

where a and b are real constants.

Try the solution


y   =   e EQ \s\up6(lx)
 trial solution
Put the above equation into the differential equation, we have


(2 + a  + b) e EQ \s\up6(lx)   =   0

Hence, if y   = e EQ \s\up6(lx) be the solution of the differential equation,  must be a solution of the quadratic equation


2 + a  + b   =   0
 characteristic equation
Since the characteristic equation is quadratic, we have two roots:


1   =    EQ \f( - a + \r(a2 - 4b) ,2) 

2   =    EQ \f( - a - \r(a2 - 4b) ,2) 
Thus, there are three possible situations for the roots of 1 and 2 of the characteristic equation:

Case I
a2  4b      0
1 and 2 are distinct real roots

Case II
a2  4b   =   0
1   =   2 , a real double root

Case III
a2  4b      0
1 and 2 are two complex conju​gate roots

We now discuss each case in the following:

Case I

Two Distinct Real Roots, 1 and 2  
Since y1 = e EQ \s\up6(l1x)  and y2 = e EQ \s\up6(l2x)   are linearly independent, we have 
the general solution


y   =   c1 e EQ \s\up6(l1x)   + c2 e EQ \s\up6(l2x)  
[Example]
y'' + 3 y'  10 y   =   0
;
y(0)   =   1,  y'(0)   =   3

The characteristic equation is


2 + 3   10   =   (  2) ( + 5)   =   0

we have two distinct roots


1   =   2
;
2   =   –5


y(x)   =   c1 e2x + c2 e–5x
 general solution
The initial conditions can be used to evaluate c1 and c2:


y(0)   =   c1 + c2   =   1


y'(0)   =   2 c1  5 c2   =   3


c1   =   8/7
,
c2   =   – 1/7


y(x)   =    EQ \f(1, 7 )  (8 e2x - e–5x) 

–– particular solution
Case II

Real Double Roots 
(p. 74 of the Textbook)

1   =   2   =   –  EQ \f(a, 2 ) 
In this case, y1(x) = e EQ \s\up6(–ax/2)  is a solution of the differential equa​tion.  The second linearly independent solution can be obtained by the procedure of reduction of order:

Let
y2   =   u y1   =   u e EQ \s\up6(–ax/2) 
then
y2'   =   u' e EQ \s\up6(–ax/2)  –  EQ \f(a, 2 )  u e EQ \s\up6(–ax/2) 

y2''   =   u'' e EQ \s\up6(–ax/2)  – a u' e EQ \s\up6(–ax/2)  +  EQ \f(a2, 4 )  u e EQ \s\up6(–ax/2) 
so that the differential equation becomes

(u''  a u' +  EQ \f(a2, 4 )  u ) e EQ \s\up6(–ax/2)  + a (u'   EQ \f(a, 2 )   u) e EQ \s\up6(–ax/2)  + b u e EQ \s\up6(–ax/2)   =   0

or
u'' +  EQ \b\bc\[( b - \f(a2,  4   ) )  u   =   0

But since a2 = 4 b, we have  u'' = 0.  thus, u' is a constant which can be chosen to be 1, and u = x.  Hence


y2   =   x e EQ \s\up6(–ax/2) 
Thus, the general solution for this case is


y(x)   =   (c1 + c2 x) e EQ \s\up6(–ax/2) 
 general solution

[Example]
Solve y''  6 y' + 9 y   =   0

[Solution]
The characteristic equation is


2  6  + 9   =   0   or   (  3)2   =   0

and
1   =   2   =   3

Thus, the general solution is


y   =   (c1 + c2 x) e3x
Case III
Complex Conjugate Roots   1 and   
(Sec. 2.3, p. 76 of the Textbook)

1   =   –  EQ \f(1, 2 )   a + i 

2   =   –  EQ \f(1, 2 )   a  i 

where
   =    EQ \r(b - \f(a2,4) ) 
and
i   =    EQ \r(-1) 
Thus, Y1 = e EQ \s\up6(l1x)  and Y2 = e EQ \s\up6(l2x)   are solutions (complex functions) of the differential equation. Thus,
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Note that we have proven that any linear combination of solutions is also a solu​tion.  Thus, we consider the solutions (which are real functions as shown later):


y1   =    EQ \f(1, 2 )  (Y1 + Y2) 

y2   =    EQ \f(1, 2 i )  (Y1 - Y2) 
From the complex variable analysis
, we have Euler Formula

e EQ \s\up6(iq)   =   cos  + i sin 

e EQ \s\up6(-iq)   =   cos   i sin 
Thus,
Y1   =   e EQ \s\up6(l1x)  = e EQ \s\up6(–ax/2) (cos wx + i sin wx) 

Y2   =   e EQ \s\up6(l2x)  = e EQ \s\up6(–ax/2) (cos wx - i sin wx) 
or
y1   =   e EQ \s\up6(–ax/2)   cos x


y2   =   e EQ \s\up6(–ax/2)   sin x
Therefore, 
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Since y1/y2 = cot x,  (0, is not constant, y1 and y2 are lin​early independent.  We therefore have the following general solution:


y   =   e EQ \s\up6(–ax/2) (A cos wx + B sin wx) 
where A and B are arbitrary constants.
[Example]
Solve y'' + y' + y   =   0
;
y(0)   =   1,  y'(0)   =   3

[Solution]

The characteristic equation is


2 +  + 1   =   0

which has the solutions


1   =    EQ \f(-1 + i\r(3), 2 ) 
2   =    EQ \f(-1 - i\r(3), 2 ) 
Thus, the general solution is


y(x)   =    e EQ \s\up6(–x/2) \b\bc\[( A cos \f(\r(3), 2 ) x + B sin \f(\r(3), 2 ) x ) 
The constants A and B can be evaluated by considering the initial conditions:


y(0)   =   1

A   =   1


y'(0)   =   3

 EQ \f(  \r(3)  ,2) B   EQ \f(1,  2  ) A   =   3


A   =   1
;
B   =    EQ \f(7, \r(3) ) 
Thus


y(x)   =   e EQ \s\up6(–x/2) \b\bc\[( cos \f(\r(3), 2 ) x + \f(7, \r(3) ) sin \f(\r(3), 2 ) x ) 
Complex Exponential Function
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Summary
For the secondorder homogeneous linear differential equation


y'' + a y' + b y   =   0

the characteristic equation is


2 + a  + b   =   0

The general solution of the differential equation can be classified by the types of the roots of the characteristic equation:

Case
Roots of 
General Solution



I
Distinct real
y   =   c1 e EQ \s\up6(l1x)   + c2 e EQ \s\up6(l2x) 


1,  2

II
Complex conjugate



1   =   –  EQ \f( 1 ,2)  a + i 
y   =   e EQ \s\up6(–ax/2) ( A cos wx + B sin wx ) 


2   =   –  EQ \f( 1 ,2)  a  i 

III
Real double root
y   =   ( c1 + c2 x ) e EQ \s\up6(–ax/2) 


1   =   2   =   –  EQ \f( 1 ,2)  a

Riccati Equation  (Nonlinear 1st-order ODE)
Linear 2ndorder ODEs may also be used in finding the solution to the special form of Riccati Equation:

Original:           
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Special Case:    y' + y2 + p(x) y + q(x)=0

Let
y   =    EQ \f(z', z ) 
then
y'   =    EQ \f(z'', z )   –  EQ \b\bc\[( \f(z', z ) )\s\up15(2) 
thus the Riccati equation becomes


 EQ \f(z'', z )   –  EQ \b\bc\[( \f(z', z ) )\s\up15(2)   +  EQ \b\bc\[( \f(z', z ) )\s\up15(2)   + p(x)  EQ \f(z', z )   + q(x)   =   0

or
z'' + p(x) z' + q(x) z   =   0

If the general solution to the above equation can be found, then


y   =    EQ \f(z', z ) 
is the general solution to the Riccati equation.

[Exercise 1]
Solve 
y' + y2 + 2y + 1   =   0
,
y(0)   =   0

[Exercise 2]
Solve    x2 y' + x y + x2 y2   =   1

Differential Operators  
(Sec 2.4, p. 81 of the Textbook)

The symbol of differentiation d/dx can be replaced by D, i.e.,


Dy   =    EQ \f(dy, dx )   = y'

where D is called the differential operator which transforms y into its derivative y'.  For example:


D(x2 )    =   2x


D(sin x)   =   cos x


D2y D(Dy)   =   D(y')   =   y''


D3y   =   y'''

In addition,  y'' + a y' + b y (where a, b are constant) can be written as


D2y +  a Dy + b y

or
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where P(D) is called a secondorder (linear) differential operator.  The homogeneous linear differential equation, y'' + a y' + b y = 0, may be written as


(D2 + a D + b)y   =   0
or
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 [Example]
Calculate (3D2  10D  8) x2, (3D+2) (D4)x2, and (D4) (3D+2) x2
[Solution]


(3D2  10D  8) x2   
=   3D2x2  10Dx2 – 8x2


=   6  20x  8x2

(3D + 2)(D  4)x2   
=   (3D + 2) (Dx2  4x2)



=   (3D + 2) (2x  4x2)



=   3D(2x  4x2) + 2(2x  4x2)



=   6  24x + 4x  8x2


=   6  20x  8x2

(D  4)(3D + 2)x2   
=   (D  4) (3Dx2 + 2x2)



=   (D  4) (6x + 2x2)



=   D(6x + 2x2)  4(6x + 2x2)



=   6 + 4x  24x  8x2


=   6  20x  8x2
Note that (3D2  10D  8)   =   (3D + 2) (D  4)   =   (D4) (3D + 2)

The above example illustrates that the operator D can be handled as though it were a simple algebraic quantity.  But...

[Example]
Is (D + 1) (D + x)ex   =   (D + x) (D + 1)ex ?

[Solution]


(D + 1) (D + x)ex 
=   (D + 1) (Dex + x ex)



=   (D + 1) (ex + x ex)



=   D(ex + x ex) + (ex + x ex)



=   ex  + ex + x ex + ex + x ex


=   3 ex  +  2 x ex

(D + x) (D + 1)ex 
=   (D + x) (Dex + ex)



=   (D + x) (ex + ex)



=   (D + x) (2ex)



=   D(2ex)  +  2 x ex


=   2ex  +  2 x ex
Thus,
(D + 1) (D + x) ex  ( (D + x) (D + 1) ex
This example illustrates that 
interchange of the order of factors containing variable coefficients are not allowed. 
e.g., xDy ( Dxy, or in general,


P1(D) P2(D) ( P2(D) P1(D)

[Question]
Is ( x2 D ) ( x D ) y   =   ( x D ) ( x2 D ) y  ?

[Example]
Factor L(D)   =   D2 + D  6 and solve L(D)y   =   0

[Solution]


L(D)   =   D2 + D  6   =   (D + 3) (D  2)


L(D)y   =   y'' + y'  6 y   =   0

has the linearly independent solutions


y1   =   e–3x
and
y2   =   e2x
Note that


(D + 3) (D  2) y   =   0

can be factored as


(D + 3) y   =   0

y   =   e–3x

(D  2) y   =   0

y   =   e2x
which also form the basis of L(D)y   =   0.
4 Euler Equations  (Linear 2nd-order ODE with variable coefficients)
(Sec. 2.6, p. 93 of the Textbook)
For most linear secondorder equations with variable coefficients, it is necessary to use techniques such as the power series method (Chapter 4) to obtain information about solutions.  However, there is one class of such equations for which closedform solutions can be obtained  the Euler equation:


x2 y'' + a x y' + b y   =   0,
x ( 0

We now guess that the form of the solutions of the above equation be


y   =   xm
and put the derivatives of y into the Euler equation, we have


x2 m (m  1) xm2 + a x m xm1 + b xm   =   0

If x ( 0, we can divide the above equation by xm to obtain the characteristic equation for Euler equation:


m (m  1) + a m + b   =   0

or
m2 + (a  1) m + b   =   0
Characteristic Equation
As with the constantcoefficient equations, there are three cases to consider:
Case I
Two Distinct Real Roots   m1 and m2
In this case,  x EQ \s\up6(m\s\do3(1))  and x EQ \s\up6(m\s\do3(2))  constitute a basis of the Euler equation.  Thus, the general solution is


y   =   c1 x EQ \s\up6(m\s\do3(1))  + c2 x EQ \s\up6(m\s\do3(2))  
Case II
The Roots are Real and Equal m1=m2 =m =(1-a)/2
In this case, xm is a solution of the Euler equation.   To find a second solution,  we can use the method of reduction of order and obtain ( Exercise! ):


y2   =   xm ln |x|
Thus, the general solution is


y   =   xm (c1 + c2 ln |x| )
Case III
The Roots are Complex Conjugates    i 
This case is of no great practical importance. The two linearly independent solutions of the Euler equation are (read p. 95 of the textbook for derivations!)
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By adding and subtracting these two equations


x EQ \s\up6(m)  cos ( ln |x|)   and  x EQ \s\up6(m)  sin ( ln |x|)

Thus, the general solution is


y   =   x EQ \s\up6(m)  [ A cos ( ln |x|) + B sin ( ln |x|) ]
 [Example]
x2 y'' + 2 x y'  12 y   =   0

[Solution]
The characteristic equation is


m ( m  1 ) + 2 m  12   =   0

with roots
m   =   – 4  and  3

Thus, the general solution is


y   =   c1 x-4 + c2 x3 
[Example]
x2 y''  3 x y' + 4 y   =   0

[Solution]
The characteristic equation is


m (m  1)  3 m + 4   =   0


m   =   2,  2  (double roots)

Thus, the general solution is


y   =   x2 ( c1 + c2 ln |x|)
[Example]
x2 y'' + 5 x y' + 13 y   =   0

[Solution]
The characteristic equation is


m ( m  1 ) + 5 m + 13   =   0

or
m   =   – 2 + 3 i    and      2  3 i
Thus, the general solution is


y   =   x–2 [ c1 cos (3 ln|x|) + c2 sin (3 ln|x|) ]

[Exercise 1]  The Euler equation of the third order is 


x3 y''' + a x2 y'' + b x y' + c y   =   0

Show that y = xm is a solution of the equation if and only if m is a root of the characteristic equation


m3 + ( a  3 ) m2 + ( b  a + 2 ) m + c   =   0

What is the characteristic equation for the nth order Euler equation?
[Exercise 2]
An alternative method to solve the Euler equation is by making the substitution


x   =   ez
or
z   =   ln x

Show that he homogeneous secondorder Euler equation


x2 y'' + a x y' + b y   =   0,
x ( 0

can be transformed into the constantcoefficient equation
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[Exercise 3]
( x2 + 2 x +1 ) y''  - 2 ( x + 1 ) y'  + 2 y   =   0

[Exercise 4] 
( 3 x + 4 )2 y''  -  6 ( 3 x + 4 ) y'  + 18 y   =   0

[Exercise 5]
y'' + ( 2 ex - 1 ) y'  +  e2x y   =   0
( Hint: Let z   =   ex )

5
Existence and Uniqueness of Solutions 
 (Sec 2.7 of the Textbook)
5.1
SecondOrder Differential Equations
Consider the following initial value problem:


y'' + p(x) y' + q(x) y   =   0
(1a)

with
y(x0)   =   k0   ,   y'(x0)   =   k1
(1b)

TheoremExistence and Uniqueness Theorem
If p(x) and q(x) are continuous functions on an open interval I and x0 is in I, then the initial value problem (1) has a unique solution y(x) on the interval.
WronskianDefinition
The Wronskian of two solutions y1 and y2 of (1a) is defined as


W(y1, y2)   =    EQ \b\bc\|(\a\ac \co2\hs12\vs12(y1,y2,y1',y2'))  = y1y2'  y2y1'

TheoremLinear Dependence and Independence of Solutions
If p(x) and q(x) of the equation

y'' + p(x) y' + q(x) y   =   o
are continuous on an open interval I, then two solutions y1(x) and y2(x) on I are linearly dependent if and only if W(y1, y2)   =   0 for some x   =   x0 in I.
Furthermore, if W=0 for 
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on I; hence if there is an 
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are linearly independent on I.

[Proof]:

(1)   
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If y1 and y2 are linearly dependent on I, then


y1   =   c y2   or   y2   =   k y1
If we take y1   =   c y2, then


W(y1, y2)   =   W(cy2, y2)   =    EQ \b\bc\|(\a\ac \co2\hs12\vs12(cy2,y2,cy2',y2'))  = 0

Similarly, when y2   =   k y1, W(y1, y2)   =   0.

(2)
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We need to prove that if W(y1, y2) = 0 for some x = x0 on I, then y1 and y2 are linearly de pendent.  
· 
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We consider the system of linear equations:


 EQ 
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where c1 and c2 are constants to be determined.  Since the determinant of the above set of equations is


y1(x0) y2'(x0)  y1'(x0) y2(x0)   =   W(y1(x0), y2(x0) )  =   0

we have a nontrivial solution for c1 and c2; that is, 
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 and 
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 are not both zero.  
· 
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Using these numbers 
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 and 
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, we define


y   =   
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 y1(x) + 
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 y2(x)

Since y1(x) and y2(x) are solutions to the differential equation, y is also a solution.  Note that


y(x0)   =   
[image: image29.wmf]1

c

 y1(x0) +  
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c

y2(x0)   =   0


y'(x0)   =   
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c

 y1'(x0) + 
[image: image32.wmf]2

c

y2'(x0)   =   0

thus, y(x) solves the initial value problem


y'' + p(x) y' + q(x) y   =   0,  
IC:   y(x0)   =   y'(x0)   =   0

But this initial value problem also has the solution y*(x) = 0 for all values on I.  From the existence and uniqueness theorem, the solution of this initial value problem is unique so that


y(x)   =   y*(x)   =   0

or
y(x)   =   
[image: image33.wmf]1

c

 y1(x) + 
[image: image34.wmf]2

c

 y2(x)   =   0

for all values on I.  
· 
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Now since 
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 are not both zero, this proves that y1 and y2 are linearly dependent.

Implication:
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Alternative Proof by Abel's Formula

W   =   y1 y2'  y2 y1'


W'   =   (y1 y2'  y2 y1')'   =   y1'y2' + y1'y2''  y2'y1'  y2y1''



= y1 y2''  y2 y1''

Since y1 and y2 are solutions to y'' + p(x) y' + q(x) y   =   0, we have


y1'' + p(x) y1' + q(x) y1   =   0

and
y2'' + p(x) y2' + q(x) y2   =   0

Multiplying the first of these equation by y2 and the second by y1 and subtracting, we obtain


y1y2''  y2y1'' + p(x)(y1y2'  y2y1')   =   0

or
W' + p(x) W   =   0

Thus,


W(y1, y2)   =   C e EQ \s\up12(-\i(,, p(x) dx)) 
Abel's Formula
where C is an arbitrary constant.  Since an exponential is never zero, we see that W(y1, y2) is either always zero (when C = 0) or never zero (when C ( 0).  Thus, if W  =  0 for some x = x0 in I, then W = 0 on I.  In addition, if there is an x1 on I at which W ( 0, then y1 and y2 are linearly independent on I.
[Example]
y1 = cos x,    y2 = sin x     ( 0


W(y1, y2)   =    EQ \b\bc\|(\a\ac \co2\hs20\vs12(cos wx,sin wx,-w sin wx,w cos wx))  =      ( 0

thus, y1 and y2 are linearly independent.

TheoremExistence of a General Solution (see textbook p. 99)
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TheoremGeneral Solution (see textbook p.99)

[image: image40.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

11

Suppose that  0 has continuous coefficie

nts  and 

on an open interval . Then  every soluti

on  of this equation on  is of the form

                                        

  

ypxyqxypxqx

IYxI

YxCyx

¢¢¢

++=

=+

(

)

22

1212

where , form a basis of solution on  and

 ,  are suitable constants.  Hence, the

above equation does not have singular so

lution.

Cyx

yyICC


6
Nonhomogeneous Linear Differential equations

6.1
General Concepts  
(Sec. 2.8 of the Textbook)

A general solution of the nonhomogeneous equation


y(n) + pn1(x) y(n1) + ... + p1(x) y' + p0(x) y   =   r(x)

on some interval I is a solution of the form


y(x)   =   yh(x)  +  yp(x)

where yh(x) = c1 y1(x) + ... + cn yn(x) is a solution of the homogeneous equation

y(n) + pn1(x) y(n1) + ... + p1(x) y' + p0(x) y   =   0

and yp(x) is a particular solution of the nonhomogeneous equation.
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Relations between solutions of (1) and (2):  

(a) The difference of two solutions of (1) on some open interval 

is a solution of (2) on I.

(b) The sum of a solution of (1) on I and a solution of (2) on I 

is a solution of (1) on I.
 [Example]


y(x)   =   c1 ex + c2 e3x +  EQ \f(2,3)  e–2x 

is the solution of


y''  4 y' + 3 y   =   10 e–2x
where yh(x)   =   c1 ex + c2 e3x is the general solution of 


y''  4 y' + 3 y   =   0

and yp(x) =   EQ \f(2,  3  ) e–2x satisfies the nonhomogeneous equation, i.e., yp(x) is a particular solution of the nonhomogeneous equation.

The general solution of the homogeneous equation can be obtained by the method discussed in the above sections.  On the other hand, there are two methods to obtain the particular solution yp(x):  Method of Undetermined Co​efficients and Method of Variation of Parameters.  Our main task in the following, is to discuss these two methods for finding yp(x).

6.2 Method of Undetermined Coefficients  
(Sec. 2.9 of the Textbook)

Let us illustrate this method by some examples:

[Example 1]
y'' + 4 y   =   12

The general solution of y'' + 4 y   =   0 is


yh(x)   =   c1 cos 2x + c2 sin 2x

If we assume the particular solution


yp(x)   =   k

then we have yp''  =  0, and


4 k   =   12
or
k   =   3         ok!
Thus the general solution of the nonhomogeneous equation is


y(x)   =   c1 cos 2x + c2 sin 2x + 3

[Example 2]
y'' + 4 y   =   8 x2
If we now assume the particular solution is of the form


yp(x)   =   m x2
then
yp''(x)   =   2m

and
2 m + 4 m x2   =   8 x2
However, since the above equation is valid for any value of x, we need


m   =   0
and
m   =   2           
which is not possible.  
If we now assume the particular solution is of the form


yp(x)   =   m x2 + n x + q

then
yp'   =   2 m x + n


yp''   =   2 m

thus
2 m + 4 (m x2 + n x + q)   =   8 x2
or
4 m x2 + 4 n x + (2 m + 4 q)   =   8 x2
or
 EQ \b\lc\{(  \a\al(4 m = 8,4 n = 0,2 m + 4 q = 0)) 
or
m   =   2
n   =   0
q   =   –1


yp(x)   =   2 x2  1

and
y(x)    =   c1 cos 2x + c2 sin 2x + 2 x2  1

[Example 3]
y''  4 y' + 3 y   =   10 e–2x
The general solution of the homogeneous equation


y''  4 y' + 3 y   =   0

is
yh(x)   =   c1 ex + c2 e3x
If we assume a particular solution of the nonhomogeneous equation is of the form


yp(x)   =   k e–2x
then
yp'   =   – 2 k e–2x
yp''   =   4 k e–2x
and
4 k e–2x  4 (2 k e–2x) + 3 (k e–2x)   =   10 e–2x
or
15 k e–2x   =   10 e–2x
or
k   =   2/3

Thus
y(x)   =   c1 ex + c2 e3x +  EQ \f(2,3)   e–2x
[Example 4]
y'' + y   =   x e2x
The general solution to the homogeneous equation is 


yh   =   c1 sin x + c2 cos x

Since the nonhomogeneous term is of the form


x e2x
If we assume the particular solution be


yp   =   k x e2x
we will have


k (4e2x +  4 x e2x) + k x e2x   =   x e2x
or
k   =   0
and
5 k   =   1

which is not possible.  So we try a solution of the form


yp   =   e2x (m + n x)

we will have


yp   =    EQ \f(e2x,  25  )  ( 5 x - 4 ) 
Therefore, the general solution of this example is


y(x)   =   c1 sin x + c2 cos x +   EQ \f(e2x,  25  )  ( 5 x - 4 ) 
[Example 5]
y'' + 4 y' + 3 y   =   5 sin 2x

The general solution of the homogeneous equation is


yh   =   c1 e–x + c2 e–3x
If we assume the particular solution be of the form


yp   =   k sin 2x

then
yp'   =   2 k cos 2x
yp''   =   – 4 k sin 2x

or
 4 k sin 2x + 4 (2 k cos 2x) + 3 k sin 2x   =   5 sin 2x

or
 k sin 2x + 8 k cos 2x   =   5 sin 2x

since the above equation is valid for any values of x, we need


 k   =   5
and
8 k   =   0

which is not possible.  We now assume


yp   =   m sin 2x + n cos 2x

and substitute yp, yp' and yp'' into the nonhomogeneous equa​tion, we have


m   =   –  EQ \f(1,  13  )
and
n   =   –  EQ \f(8,  13  ) 
Thus
y   =   c1 e–x + c2 e–3x   EQ \f(1,  13  )  ( sin 2x + 8 cos 2x ) 
[Example 6]
y''  3 y' + 2 y   =   ex sin x

The general solution to the homogeneous equation is


yh   =   c1 ex + c2 e2x
Since the r(x)   =   ex sin x, we assume the particular solution of the form


yp   =   m ex sin x + n ex cos x

Substituting the above equation into the differential equation and equating the coefficients of sin x and cos x, we have


yp   =    EQ \f(ex,2) (cos x - sin x) 
and
y(x)   =   c1 ex + c2 e2x +   EQ \f(ex,2) (cos x - sin x) 
[Example 7]
y'' + 2 y' + 5 y   =   16 ex + sin 2x

The general solution of the homogeneous equation is


yh   =   e–x (c1 sin 2x + c2 cos 2x)

Since the nonhomogeneous term r(x) contains terms of ex and sin 2x, we can assume the particular solution of the form


yp   =   c ex + m sin 2x + n cos 2x

After substitution the above yp into the nonhomogeneous equation, we arrive


yp   =   2 ex   EQ \f(4,17)  cos 2x +  EQ \f(1,17)  sin 2x

Thus
y(x)   =   e–x (c1 sin 2x + c2 cos 2x) + 2 ex   EQ \f(4,17)  cos 2x +  EQ \f(1,17)  sin 2x

[Example 8]
y''  3 y' + 2 y   =   ex
The general solution of the homogeneous equation is


yh(x)   =   c1 ex + c2 e2x
If we assume the particular solution be of the form


yp   =   k ex
we would have


k  3 k + 2k   =   1

or
0   =   1

which is not possible (Recall that k ex satisfies the homoge​neous equation).  We need to try a different form for yp.

Assume


yp   =   k x ex
then
yp'   =   k (ex + x ex)
yp''   =   k (2 ex + x ex)

and
k (2 ex + x ex)  3 k (ex + x ex) + 2 k x ex   =   ex
or
 k   =   1
or
k   =   –1

Thus,
y   =   c1 ex + c2 e2x  x ex
[Example 9]
y ''  2 y' + y   =   ex
The general solution of the homogeneous equation is 


yh   =   (c1 + c2 x) ex
If we assume the particular solution of the nonhomogeneous equation be


yp   =   k ex
or
yp   =   k x ex
we would arrive some conflict equations for k.  If we assume


yp   =   k x2 ex
then we have



k   =    EQ \f(1,2) 
thus
y(x)   =   (c1 + c2 x) ex +  EQ \f(1,2)   x2 ex
In summary, for a constant coefficient nonhomogeneous linear differential equation of the form


y(n) + a y(n1) + ... + f y' + g y   =   r(x)

we have the following rules for the method of unde​termined coefficients:

(A)
Basic Rule:  If r(x) in the nonhomogeneous differential equa​tion is one of the functions in the first column in the following table, choose the corresponding function yp in the second col​umn and determine its undetermined coefficients by substi​tuting yp and its derivatives into the nonhomogeneous equa​tion.

(B)
Modification Rule:  If any term of the suggested solution yp(x) is the solution of the corresponding homogeneous equa​tion, multiply yp by x repeatedly until no term of the product xkyp is a solution of the homogeneous equation.  Then use the product xkyp to solve the nonhomogeneous equation.

(C)
Sum Rule:  If r(x) is sum of functions listed in several lines of the first column of the following table, then choose for yp  the sum of the functions in the corresponding lines of the second column.

Table for Choosing yp

r(x)
yp(x)






Pn(x)
a0 + a1 x + ... + an xn

Pn(x) eax
(a0 + a1 x + ... + an xn) eax


 EQ \b\rc\}(\a(Pn(x) eax sin bx , ,+, ,Qn(x) eax cos bx)) and/or
 EQ \a\al((a0 + a1 x + ... + an xn) eax sin bx , ,              +, ,(c0 + c1 x + ... + cn xn) eax cos bx) and
where Pn(x) and Qn(x) are polynomials in x of degree n (n ≥ 0).
[Example 10]  y'' - 4 y'  +  4 y   =   6 x e2x
[Solution]
yh   =   c1 e2x  +  c2 x e2x

yp                   first guess:  
yp   =   ( a + b x ) e2x
No!



yp   =   x ( a + b x ) e2x
No!



yp   =   x2 ( a + b x ) e2x
O.K.

[Example 11]  y'' - 2 y' + y   =   ex + x

[Solution]
yh   =   ( c1 + c2 x ) ex


Guess of yp:
yp   =   a + b x + c ex
No!



yp   =   a + b x + c x ex
No!



yp   =   a + b x + c x2 ex
O.K.


....   
yp   =   2 + x +  EQ \f(1, 2 )  x2 ex
[Example 12]  x2 y'' - 5 x y' + 8 y   =   2 lnx,    
x  0

[Solution]
Note that the above equation is not of constant coefficient type!  

Let z   =   ln x,   or x   =   ez,  then


x2 y'' + a x y' + b y   =   0     EQ \f(d2y, dz2 )   +  (a - 1)  EQ \f(dy, dz )   +  by   =   0

thus,   x2 y'' - 5 x y' + 8 y   =   2 ln x


  EQ \f(d2y, dz2 )   + (a - 1)  EQ \f(dy, dz )   +  by   =   2z

or
y'' - 6 y' + 8y   =   2z, 
where  y' and y'' are differentiated wrt z.


yh   =   c1 e4z  +  c2 e2z
and
yp   =   c z + d   =    EQ \f(1, 4 )  z +  EQ \f(3, 16 )  

y(z)   =   c1 e4z  + c2 e2z  +    EQ \f(1, 4 )  z +  EQ \f(3, 16 )  

y(x)   =   c1 x4 + c2 x2 +  EQ \f(1, 4 )  ln x  +  EQ \f(3, 16 )  
[Exercise 1]
(a)
x2 y''   4 x y'  + 6 y   =   x2  x

[Answer]
y   =   c1 x2 + c2 x3   EQ \f(x, 2 )   x2 ln x

(b)
y''  -  y   =   x sin x

(c)
[Answer]
yp  =  ( a x + b ) sin x  +  ( c x + d ) cos x
y''  -  y   =   x ex sin x

(d)
y''  +  y   =   - 2 sin x  + 4 x cos x 

(e)
 ( D2 + 1 ) ( D - 1 ) y  =  x e2x + cos x

(f)
y'' - 4y' + 4y  =  x e2x,
with
y(0)   =   y'(0)   =   0

[Exercise 2]
Transform the following Euler differential equation into a constant coefficient linear differential equation by the substitution z = ln(x) and find the particular solution yp(z) of the transformed equation by the method of undetermined coefficients:



x2 y'' - x y' - 8 y  =  x4 - 3 ln (x)    
;
x    0 

[Answer]
yp   =   ( a x2 + b x ) sin x  +  ( c x2 + d x ) cos x

6.3 Method of Variation of Parameters  
(Sec. 2.10, p. 108 of the Textbook)

In this section, we shall consider a procedure for finding a particular solution of any nonhomogeneous secondorder linear differential equation


y'' + p(x) y' + q(x) y   =   r(x)

where p(x), q(x) and r(x) are continuous on an open interval I.  The general solution of the corresponding homogeneous equation


y'' + p(x) y' + q(x) y   =   0

is given
yh   =   c1 y1 + c2 y2
where c1 and c2 are arbitrary constants.  
Suppose that the particular solution of the nonhomogeneous equation is of the form


yp   =   u(x) y1 + v(x) y2

This replacement of constants or parameters by variables gives the method "Variation of Parameters".  

Notice that the assumed particular solution 
[image: image42.wmf]p

y

contains two functions u and v. The requirement that the particular solution satisfies the non-homogeneous differential equation imposes only one condition on u and v. It seems plausible we can impose a second arbitrary condition.  By differentiating yp, we have


yp'   =   u' y1 + u y1' + v' y2 + v y2'
To simplify this expression, it is convenient to set

u' y1 + v' y2   =   0

This reduces the expression for yp'  to


yp'   =   u y1' + v y2'

Differentiating once again, we have


yp''   =   u' y1' + u y1'' + v' y2' + v y2''

Putting yp'', yp' and yp into the nonhomogeneous equation and collecting terms, we have

u (y1'' + p y1' + q y1) + v (y2'' + p y2' + q y2) + u' y1' + v' y2'   =   r

Since y1 and y2 are the solutions of the homogeneous equation, we have


u' y1' + v' y2'   =   r

This gives a second equation relating u' and v', and we have the simultaneous equations


y1 u' + y2 v'   =   0

y1' u' + y2' v'   =   r

which has the solution


u'  
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 =   –  EQ \f(y2 r,W) 
v'   
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=    EQ \f(y1 r,W) 
where
W   =   y1 y2'  y1' y2 ( 0 
is the Wronskian of y1 and y2.  Notice that y1, y2 are linearly independent!
After integration, we have


u   =   –  EQ \i( , , \f(y2 r,W) dx)   
v   =    EQ \i( , , \f(y1 r,W) dx) 
Thus, the particular solution yp is


yp(x)   =   – y1  EQ \i( , , \f(y2 r,W) dx)   +  y2  EQ \i( , , \f(y1 r,W) dx) 
[Example 1]
y''  y   =   e2x
The general solution to the homogeneous equation is


yh   =   c1 e–x + c2 ex
i.e.,
y1   =   e–x
y2   =   ex
The Wronskian of y1 and y2 is


W   =    EQ \b\bc\|(\a\co2\hs12\vs12(e–x,ex,-e–x,ex))  = 2

thus, 
u'   =   –  EQ \f(y2 r,W)   =   EQ \f(ex e2x,2)   =  EQ \f(- e3x, 2) 

v'   =    EQ \f(y1 r,W)  =  EQ \f(e–x e2x,2)   =  EQ \f(ex, 2 ) 
Integrating these functions, we obtain


u   =   –  EQ \f(e3x,6) 

v   =    EQ \f(ex,2) 
A particular solution is therefore


yp   =   u y1 + v y2   
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and the general solution is


y(x)   
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[Example 2]
y'' + y   =   tan x

The general solution to the homogeneous equation is


yh   =   c1 cos x + c2 sin x

thus,
y1   =   cos x
y2   =   sin x

Also
W   
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so that
u'   =   –  EQ \f(y2 r,W)   =  sin x tan x


v'   =    EQ \f(y1 r,W)  = cos x tan x   =   sin x

Hence
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Since by looking up table 
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Thus,

u = sin x  ln| sec x + tan x |


v   =   – cos x

Thus, the particular solution is


yp   =   u y1 + v y2   =   – cos x  ln| sec x + tan x |

and the general solution is


y(x)   =   c1 cos x + c2 sin x  cos x  ln| sec x + tan x |

[Example 3]
x2 y'' + 2 x y'  12 y   =    EQ \r(x) 
This is an Euler equation.  The general solution to the homogeneous equation is


yh   =   c1 x–4 + c2 x3
or
y1   =   x–4
y2   =   x3
and 
W   =    EQ \b\bc\|(\a\co2\hs12\vs12(x–4,x3,-4x–5,3x2))  = 7 x–2
or
 EQ \f(1,W)   =  EQ \f(x2, 7 ) 
In order to use the method of variation of parameters, we must write the differential equation in the standard form in order to obtain the correct r(x), i.e.,


y'' +  EQ \f(2, x )  y'   EQ \f(12, x2 )   y   =   x–3/2
or
r(x)   =   x–3/2
Thus,
u'   =   –  EQ \f(y2 r,W)   =  x3 x–3/2  EQ \f(x2, 7 )   =   EQ \f(x7/2, 7 ) 
and
v'   =    EQ \f(y1 r,W)   = x–4 x–3/2  EQ \f(x2, 7 )   =  EQ \f(x–7/2, 7 ) 
Hence
u   =   –  EQ \f(1, 7 ) \f(2, 9 )  x9/2
v   =   –  EQ \f(1, 7 ) \f(2, 5 )  x–5/2
so that
yp   =   u y1 + v y2   

[image: image50.wmf]9/245/23

22

 

6335

xxxx

--

=--


=   –  EQ \f(4,45)   x1/2
Thus, the general solution is given by


y(x)   =   c1 x–4 + c2 x3    EQ \f(4, 45 ) x1/2
[Example 4]
(D2 + 2D + 1) y   =   e-x ln x
[Solution]
y   =   yh + yp
where yh is the solution of (D2 + 2D + 1) y   =   0

or
yh   =   c1 e-x + c2 x e-x

y1   =   e-x,   y2   =   x e-x

W   =    EQ \b\bc\|(\a\co2\hs12\vs12(e-x,xe-x,-e-x,-xe-x+e-x))   = e-2x

yp(x)   =   – y1  EQ \i( , , \f(y2 r,W) dx)   +  y2  EQ \i( , , \f(y1 r,W) dx) 
= - e-x  EQ \i( , , ) (x e-x )(e-x ln x )(e2x )dx  +  x e-x  EQ \i( , , ) (e-x )(e-x ln x) (e2x )dx
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= e-x ( EQ \f(x2, 2 )  ln x -  EQ \f(3, 4 )  x2)

y   =   c1 e-x + c2 x e-x + e-x ( EQ \f(x2, 2 )  ln x -  EQ \f(3, 4 )  x2)
[Exercise 1]
(a)
Solve   x2 y'' - 2 x y' + 2 y   =   x2 + 2

(b)
x2 y'' - x y' - 8 y  =  x4 - 3 ln (x)    
;
x    0

by method of variation of parameters.

(c)
Solve
x y'' + y' -  EQ \f(y, x )   =  x ex
(d)
Solve 
y'' - 3y' + 2y  =  cos(e-x)
[Exercise 2]
  Consider the thirdorder equation


y'''  +  a(x) y''  +  b(x) y'  +  c(x) y   =   f(x)
(1)

Let y1(x), y2(x) and y3(x) be three linearly independent solutions of the associated homogeneous equation.  Assume that there is a solu​tion of equation (1) of the form


yp(x)   =   v(x) y1(x)  +  u(x) y2(x)  +  w(x) y3(x)
(a) Following the steps used in deriving the variation of parame​ters procedure for secondorder equations, derive a method for solving thirdorder equations.
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(b)
Find a particular solution of the equation


y'''  –  2 y'    4 y   =   e–x tan x

[Exercise 2]
 In finding a particulat solution yp of a nonhomogeneous second-order differential equation



y''  +  p(x) y'  +  q(x) y   =  r(x)

we have assumed that



yp   =   u(x) y1  +  v(x) y2
where y1 and y2 are the linearly independent solution of the homogeneous equation:
y''  +  p(x) y'  +  q(x) y   =   0

In deriving the solutions of u(x) and v(x), we have assumed that



u' y1  +  v' y2   =   0

This exercise will show that there is no loss in generality in doing so.  

Suppose instead that we let



u' y1  +  v' y2   =   z(x)

with z(x) an undetermined function of x.

(a)
Show that we then obtain the system


u' y1 + v' y2   =   z


u' y1' + v' y2'   =   r Ð z' Ð p(x) z

(b)
Show that the system in part (a) has the solution


u'   =   Ð  EQ \f(y2 r(x),W)   +   EQ \f((e\s\up10(\i(,,)p(x)dx)zy2)',e\s\up10(\i(,,)p(x)dx)W) 

v'   =    EQ \f(y1 r(x),W)   –   EQ \f((e\s\up10(\i(,,)p(x)dx)zy1)',e\s\up10(\i(,,)p(x)dx)W) 
(c)
Integrate by parts to show that


 EQ \i( , , \f((e\s\up10(\i(,,)p(x)dx)zyi)',e\s\up10(\i(,,)p(x)dx)W) dx)   =    EQ \f(z yi,W)   

,
i = 1, 2

(d)
Conclude that the particular solution obtained by letting


u' y1 + v' y2   =   z(x)

is identical to that obtained by assuming


u' y1 + v' y2   =   0

�	Chapter 13 of the textbook.


� 	Grossman, S. I. and Derrick, W. R., Advanced Engineering Mathematics, p. 123, 1988.


� 	Grossman, S. I. and Derrick, W. R., Advanced Engineering Mathematics, p. 96, 1988.
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